
EECS 470 Project 4 Report

Group 5: always @(work)

Advait Iyer (adviyer), Arjun Laxman (arlx), Noel Pamenan, (pamenann), Sanidhya Patel
(sanmapat), Bradley Schulz (byschulz), Jack Wildes (jwildes)

Introduction 2
System Goals 2
System Architecture 2
Difficult Advanced features 3

Module Microarchitecture 5
Reservation station 5
Map table 5
Reorder buffer 6
Functional Units 7
Load-store queue 7
Data cache 8
Fetch + Instruction Cache 8
Branch predictor 9
Decode 10

Design and Testing Process 11
Unit Tests 11
System Tests 14

Performance Analysis 15
Performance Analysis 15
Parameter Analysis 16
Timing Analysis and Critical Paths 18

Application And Conclusion 20
Design Summary 20
Societal impacts 20
Lessons Learned 20
Next Steps 21
Acknowledgments 21



EECS 470 Project 4 Group 5 2

Introduction

For our project, we implemented a P6-style N-way superscalar processor. Our overall goal was to
minimize stalling whenever possible using techniques such as data forwarding, early tag
broadcast, and early branch resolution.

System Goals
We aimed to be aggressive with our advanced features. We built support for N-way superscalar
and early tag broadcast from the moment we began our design, as the reservation station and
reorder buffer needed to have these features integrated from the start. Early branch resolution
was added after our initial integration as we realized the added complexity of implementing this
feature was worth the performance benefits.

With the P6-style architecture, we prioritized decreasing our CPI over minimizing clock period.
We anticipated that choosing P6 over R10K would make it easier to debug, facilitating the
integration of more complex features. Thus, we could gain a greater performance improvement
through a low CPI than what we could achieve by minimizing our clock period.

System Architecture
Figure 1 documents our high level architecture with the interface wires between each module

Figure 1: High level system diagram



EECS 470 Project 4 Group 5 3

Difficult Advanced features
We built 3 difficult advanced features into our design: N-way superscalar, early branch
resolution, and early tag broadcast. We were successful in building all three into our system. The
table below summarizes the advanced features.

Table 1: Advanced feature summary

Feature Status Notes

N-way superscalar Complete and integrated in final
design

Tested for N values 1, 2, 3, and 4

Early tag broadcast Complete and integrated in final
system

Has been working since our first
system integration (see Figure 2)
Allows for a smaller ROB as
instructions get retired faster.

Early branch
resolution

Complete and integrated in final
system

Mostly involved map table
checkpointing, rolling back the tail in
the ROB and clearing FUs on
mispredicts.

Simpler features
Table 2 summarizes the simple advanced features we implemented in our design

Table 2: Simple feature summary

Feature Status Notes

Instruction prefetching Complete Uses sequential prefetching to continually
request instructions following the last PC
requested from the fetch stage.

Gshare branch predictor Complete In our final design, we have 8 bits of history
with another 8 for overflow with 2 bits per
pattern in our PHT.

Issue memory accesses
out of order

Complete Ran into many bugs during integration, but the
memory accesses pass all our tests.

Store to load forwarding Complete Successfully forwards values whenever a load
or store with matching addresses issues.

Non-blocking L1 Complete Operations split across a load buffer, memory



EECS 470 Project 4 Group 5 4

instruction cache access buffer, and an MSHR.

K-way set associative
data cache

Complete Associativity is parameterizable and tested for
K={1, 2, 4, 32}. LRU eviction policy. Ran into
many edge cases with memory coming back on
the same cycle as a LSQ request.

Victim cache Complete Fully associative with an NMRU eviction
policy. Similar edge cases to the data cache.

Design choices
We made a few design simplifications to decrease the complexity of our design. The noteworthy
ones are described in Table 3 below

Table 3: Noteworthy design decisions

Decision Relevant Modules Benefits Potential downsides

One branch fetched
per cycle

Fetch and branch
predictor

Only one access to
the pattern history
table per cycle

Reduced benefits of
superscalar for
branch-heavy
programs

Data cache always
has priority over
instruction cache

Load-store queue,
data cache,
instruction cache, and
fetch

Simple arbitration
logic and decreased
delay coming from
loads that missed in
the cache

May stall instruction
fetch for
memory-intensive
programs

Loads always have
priority over stores in
load-store queue

Load-store queue,
data cache

Will get loads back
from memory sooner
which decreases the
time it takes for loads
to complete

Store queue may fill
up with stores that are
prevented from going
to memory if there
are many loads issued
consecutively



EECS 470 Project 4 Group 5 5

Module Microarchitecture

Reservation station
The reservation station (RS) is composed of two separate components: a reservation station and
an issue register. In the reservation station, dispatched instructions are stored until both their
source tags are resolved. When both source tags are resolved, a priority selector chooses whether
that instruction will get issued, as we are limited to issuing, at most, N instructions per cycle.
Once an instruction has been issued, those instructions are sent to the functional units. Each
instruction in the RS includes a b-mask in order for mispredicted instructions to get properly
squashed. Despite having an issue register, instructions do not leave the reservation station until
they also leave the issue register. We never decided to change this because RS stalls did not
occur frequently enough.

Due to early tag broadcast, instructions are ready to issue as soon as their source tags are
broadcasted on the CDB. The indices of the matching tags are stored in the issue register and
used to route the correct data to the functional units on the next cycle when the data appears on
the CDB. Additionally, we need to keep track of the previous CDB packet because instructions
that are dispatched may have source tags that should be marked ready if they were broadcast on
the CDB in the previous clock cycle.

We do not treat loads and stores any differently than normal instructions besides associating
them with a respective load and store queue position supplied by the load-store-queue. This is
because the load-store-queue handles most of the logic for loads and stores

We can only dispatch as many instructions as there are spaces available in the RS, so if there is
no space in the RS, we stall dispatch. Additionally, the issue register is stalled if there are not
enough free load tags in the load-store-queue (which are used to associate loads with memory
transactions—our early branch resolution implementation prevents us from simply using the
ROB tag due to some edge cases).

Map table
The map table module comprises two components: a map table and a checkpoint table. The map
table stores a tag packet for each register which includes the tag of the instruction in the ROB
that writes to that register, a plus bit to denote completion, and a valid bit to identify whether the
tag is empty or not. The map table receives either the register or the tag of instructions that are
being allocated, completed or retired every cycle and updates the map table entries accordingly.
Along with this, the map table also supplies the tags of the source registers as required by the
ROB and the RS corresponding to the registers given to the map table from the decode stage.



EECS 470 Project 4 Group 5 6

Early branch resolution requires us to have a checkpoint table. Whenever a branch is dispatched,
a checkpoint entry is allocated to that branch and a copy of the current map table is stored along
with the tag of the branch instruction. For every subsequent allocation, completion and
retirement request, we go through all entries in the checkpoint table and make any change to the
checkpointed map table if and only if the update corresponds to an instruction older than the
branch. This allows us to maintain multiple states of the map table such that all instructions until
that branch are retired.

In the case of a mispredict, the map table is restored to the checkpointed table corresponding to
the mispredicted branch and the execution of instructions is resumed from that point.

Reorder buffer
The Reorder Buffer (ROB) was designed to simultaneously allocate dispatched instructions,
complete instructions already present therein, and retire completed instructions, alongside rolling
the tail back on a mispredict—all in the same cycle. It achieves this functionality while
maintaining precise state.

It has a parameterizable size, with each entry containing an instruction packet (used for
debugging and handling some contingencies), its destination register, a valid bit, a done bit (to
indicate completion), and its completed value (if applicable).

On dispatch, the ROB allocates up to N instructions to entries past its current tail, wrapping
around if necessary. Then, it sends the completed values for entries present therein to the
reservation station, as specified by the map table for the instructions dispatched in the current
cycle. It also allows for correctly dispatching instructions on the same cycle as a mispredicted
tail roll-back. Nevertheless, we decided not to use this feature due to other complications caused
by dispatching in this scenario.

On completion, the ROB marks set the ‘done’ bits of corresponding entries to 1. As we
implemented early tag broadcast, it sets a variable called ‘prev_cdb_match’ to 1 for the same
entries, indicating that a value is expected on the next clock cycle. Up to N relevant instructions
are marked as ‘enabled’ for retirement at this stage. These entries can also be dispatched to in the
subsequent cycle. ROB ensures that no entries past the mispredicted branch or a halt are marked
for retirement, so as to maintain precise state.

At retirement, the ROB marks up to N entries as invalid, depending on how many are enabled for
retirement. Then, if any retired instructions are ‘stores’, it sends a signal to the Load Store Queue
indicating that the particular store can be evicted from the store queue. This signal is not sent
after a ‘halt’ has been retired, to address scenarios in which store instructions are dispatched after
the program has halted, which can corrupt our processor’s data memory.



EECS 470 Project 4 Group 5 7

Functional Units
Our functional units contain N ALUs, N 4-stage multipliers, and a load store queue. We have N
ALUs and multipliers to avoid structural hazards when issuing N instructions. Each ALU can
resolve branches, so multiple branches can be resolved on the same cycle.

On issue, the functional unit module uses an N x 3N switching network to route the incoming
issue packets to the correct functional unit.

To implement early tag broadcast, we use an output buffer that sends the tags of completed
instructions out combinationally but the data out sequentially. The output buffer has a tag head
and a data head, where the data head is always the tag head on the previous cycle.

So as to thoroughly implement early branch resolution with minimal stalling, instructions older
than the mispredicted branch are also squashed at every stage in the functional units, including
but not limited to the output buffer and the multi-stage multiplier.

Load-store queue
We experimented with an alternative load-store queue architecture where loads and stores can
issue out of order but must leave the LSQ in order. The goal was to minimize the memory access
delay through issuing memory accesses of loads before all prior stores are resolved, but not have
to deal with cleaning up mis-speculated loads outside the load queue.

The load queue and store queue entries are allocated when a load or store is dispatched, and the
positions in the respective queue are recorded in the reservation station. On issue, the address of
the load or store is calculated, any necessary forwarding logic is performed, and load addresses
are requested from memory. Stores leave when they receive an enable signal from the ROB to
send the store to the data cache on retirement, and loads leave when all prior stores have resolved
and it has received all its data, either through forwarding or from the data cache.

The LSQ can forward values from loads to stores whenever a store issue and a load issues. When
a store issues, the address and location of the store in the store queue are compared against every
entry in the load queue. When a load issues, the load queue sends the store queue head and tail at
the time it was dispatched, and the store queue uses that to find the newest store that can forward
to this load.

To manage loads and stores of different sizes, all data is kept word-aligned. This makes it easy to
forward each relevant byte to a load. When sending data out on the CDB, the load-queue shifts
the data so that the requested byte, half, or word starts at the least significant bit.



EECS 470 Project 4 Group 5 8

The LSQ assigns tags to each load so the data returned from the data cache can be sent to the
correct load in the load queue. We maintain a free list of load tags so no two outstanding requests
to the data cache can have the same load tag at any given point in time.

Data cache
We made a non-blocking, 2k-way set associative, write-back, allocate-on-write cache with a
least-recently-used (LRU) eviction policy. It allows for the number of sets to be toggled so as to
enable Direct Mapped and Fully Associative implementations. On eviction from the data cache,
a cache block is fed into a 32 byte victim cache with a not-most-recently-used (NMRU) eviction
policy. The non-blocking feature of our data cache is achieved through a miss status holding
register (MSHR). If a memory request from the LSQ misses in either the data cache or victim
cache, whether it be a load or a store due to our allocate-on-write policy, this request will be
stored in the MSHR until it receives a response from memory in which case the data coming
back from memory will be written to the data cache. This allows us to keep receiving and
resolving requests from the LSQ even if there is a cache miss. In order to reduce stalls even
further, our data and victim caches are also designed to be able to accept multiple
requests/evictions in the same cycle. For example, if there is a store to the cache on the same
cycle as data from a previous load request is returning from memory, the data cache will allocate
two entries on that cycle.

We have a couple of extra components in our cache module as well. There is a memory buffer
that sends a single request to memory every cycle if there are any pending requests from the data
cache. There is also a load buffer that keeps track of all pending load requests and broadcasts
load requests back to the LSQ when they complete, either from a memory response or the
data/victim caches.

In terms of stalling, the data cache is only forced to stall if the MSHR is full, if the memory
buffer has less than three open entries, and if the LSQ sends it a store request to a set that is full
of “unevictable” entries, has dirty data but the cache line is not filled with valid data. In these
scenarios, the request from the LSQ is rejected and will be received again in the next cycle.

Fetch + Instruction Cache
Our fetch logic revolves around an instruction buffer that fills up with future instructions. The
fetch stage aims to fill up this instruction buffer and send N instructions to dispatch each cycle.

Our instruction cache is banked to allow us to move N instructions every cycle. The number of
banks is the lowest power of 2 above N/2. We chose to make the number of banks a power of 2
so that a set of bits in the PC address can be designated only for indexing into the correct bank.



EECS 470 Project 4 Group 5 9

Branch prediction occurs at the fetch stage so the fetch stage knows which PC to fetch next. We
only predict one branch per cycle, so we stop fetching if we receive a branch instruction from the
I-cache, and do not fetch any instructions after that branch regardless of whether it is taken or not
taken. To implement this, the fetch stage does a preliminary partial decode of instructions by
comparing their opcodes against that of a branch, JAL, or JALR instruction.

Since the data cache has priority over the instruction cache, the instruction cache has to request
access to the memory system through an arbiter in the top level pipeline. It continually requests
the same address until that arbiter accepts the request.

Regarding prefetching, the instruction cache sequentially prefetches instructions following the
last requested PC from fetch. It maintains its own memory with the last requested address, and
increments that address by 4 every cycle in which it receives a grant from the top level arbiter.

Branch predictor
The branch predictor module is responsible for providing the next PC to the fetch unit and
maintaining the current bmask. The module accepts at most one branch instruction to be used for
prediction. This must be the last instruction fetched if it is a branch.

The branch predictor uses Gshare to predict whether a branch is to be taken or not. The main
components that comprise the predictor are a history buffer, a pattern history table (PHT) and a
branch target buffer (BTB). Our history buffer consists of HIST_BUF_SZ bits of history
(taken/not taken) with another HIST_BUF_SZ bits for overflow history consisting of the history
of resolved branches only. This overflow is required in the case of mispredicts, when the history
buffer may be shifted back using bits from the overflow buffer, so that the current history does
not need to be retrained (no repeated warmup). Varying the HIST_BUF_SZ changes the warmup
time and in some cases, the mispredict percentage. We use the bits of our history buffer (the
currently active half) XORed with corresponding least significant bits of the branch PC to index
into the PHT, giving us (2HIST_BUF_SZ) entries in the PHT. We also have 2 bits of state per pattern in
the PHT in order to introduce hysteresis so that we may potentially save a misprediction while
breaking out of double nested loops. We use the 6 least significant bits of the branch PC to index
into the BTB and obtain the potential branch target. If either the bmask is full, or there exists a
branch at the end of the history buffer that is not yet resolved, we stall fetch.

On a mispredict, we roll back the history buffer to the mispredicted branch, correct the target
address in the BTB (if it was taken) and broadcast the mispredicted bmask bits to the rest of the
pipeline. A noteworthy issue we noticed with our initial implementation was that in the case
when two fetched branches (mispredicted target address) with the same PC resolved out of order,
the second branch corrected the BTB entry for that branch PC when detected as a mispredict,
causing the first branch to not register a mispredict as it appeared as if the address was correct



EECS 470 Project 4 Group 5 10

when comparing against the BTB. This required us to also keep track of the original predicted
address taken so that we would not compare against an updated BTB entry.

Decode
Our decode module acts as a combinational interface between our fetch stage, specifically our
instruction buffer and branch predictor, and many of the other components of our pipeline
including the map table, reservation station, and reorder buffer. It decodes what instructions are
being fed into it, i.e. what source registers each instruction is dependent on, what their
destination registers are, if they are loads or stores, etc…, and sends that information in an
instruction packet to the modules that need it. For instance, the map table needs to know which
registers an instruction depends on, whereas the ROB needs their corresponding destination
registers, while the RS needs to keep track of instructions’ load and store queue positions.
Additionally, we only dispatch one branch— a constraint in our prediction approach. Upon
detection, the relevant instruction is sent to the branch predictor so a prediction for the next PC
can be made which in turn changes what instructions we will fetch from memory.

Our decode will only dispatch the number of instructions the rest of our pipeline can handle, so
as to avoid structural hazards. This is determined by the minimum of a variety of values: the
number of valid instructions in the instruction buffer, the amount of space in the load and store
queue respectively, the amount of free entries in the RS, and the amount of space in the ROB.
Decode dispatches the minimum of any of these values and N.



EECS 470 Project 4 Group 5 11

Design and Testing Process

Figure 2 shows our high level design process. We had two phases of individual design with
integration steps following each phase of individual work. We chose to test fetch, decode, and
the memory arbiter mostly during pipeline integration due to timing constraints and the relative
simplicity of those components. This followed from our general approach of ironing out modules
through unit testing to make integration more seamless.

Figure 2: Overview of design timeline
Unit Tests
All main modules were tested individually through targeted test benches. Below is an overview
of all the tests we ran for each module.

Module: Reservation Station
- Allocate entries
- Multiple instructions ready to issue are dispatched
- Every permutation of source tags receiving values from ROB, register file, CDB, and the

previous CDB
- Dispatch an instruction with sources that do not use/need register values
- Dispatch instructions with neither sources ready



EECS 470 Project 4 Group 5 12

- Dispatched instruction has one source ready and one not ready but its tag will show up
the cycle after dispatch

- Verify order RS is filled
- Fill entire RS
- Multiple instructions become ready to issue on the same cycle
- Dispatch a RS entry that gets cleared on the same cycle
- Dispatch an instruction with the same source tags
- Clear RS without any instructions being dispatched
- Clear multiple entries in RS with a mispredicted branch
- Clear multiple entries in issue register with cleared b-mask

Module: Reorder Buffer
- Dispatch a single entry.
- Dispatch multiple entries.
- Keep dispatching entries until full.
- Complete entries at the head.
- Complete entries not at the head.
- Retire a single entry.
- Retire N entries.
- Retire and dispatch entries in the same cycle.
- Complete and retire different entries in the same cycle.
- Roll the tail back on a mispredict for early branch resolution.
- Roll the tail back at the same time as retiring other instructions.
- Roll the tail back for a mispredicted branch currently at the head.
- Roll the tail back for other head and tail configurations.

Module: Decode
- Decode N invalid instructions
- Ensured sources were determined correctly
- Ensured only one branch was dispatched

Module: Map table
- Allocate single instruction
- Allocate multiple instructions with overwrite
- Complete and allocate to different register
- Complete and allocate to same register
- Retire and allocate to different register
- Retire and allocate to same register
- Retire and complete different registers (cannot retire and complete same)
- Complete multiple instructions (including overwritten non-existent tags)
- Retire one existing tag and one non-existing tag



EECS 470 Project 4 Group 5 13

- Random tests for allocating, completing and retiring separately.

Module: Functional Units
- Issue one packet to the ALU
- Issue N packets to the ALU
- Issue one packet to the multiplier
- Issue one packet to the multiplier for MULT_STAGES consecutive cycles
- Issue N packets to the multiplier
- Issue a packet to the ALU and multiplier on the same cycle
- Issue N packets to the multiplier for MULT_STAGES consecutive cycles and then N

packets to the ALU for MULT_STAGES consecutive cycles (to require maximum
buffering of outputs to the CDB)

- N-1 alu operations and N-1 multiplies completing on same cycle (to check switching
network to CDB)

- Issue and resolve a load (to check integration of lsq)
- Issue 2 stores and a load

Module: Branch Predictor
- Send multiple branches
- Resolve (predicted correctly) one branch
- Send a branch and resolve a branch in the same cycle
- Mispredict one branch
- Send a branch and mispredict a branch in the same cycle
- Multiple resolves
- Multiple mispredicts
- Allocate, mispredict and resolve with resolve newer than mispredict
- Allocate, mispredict and resolve with resolve older than mispredict
- Simulate an i<3 for loop in an infinite while loop and check the correct pattern in the

history buffer and correct prediction after warm-up.

Module: Load Store Queue
- Allocate entries
- Resolve a load not following any stalls
- Issue load that was dispatched after a stall
- Issue store forwards to load
- Issue load that forwards from store in store queue
- Issue another store that forwards to the previously forwarded to load
- Issue 2 stores simultaneously with only one forwarding to a load
- Memory returns a value to a load with a forwarded value
- Store issues that overwrites a value from memory
- Retire stores and see output on memory interface
- Issue two simultaneous loads and ensure memory accesses go out one by one
- Forward between a store and load issued on same cycle
- Clear entries due to a branch mispredict
- Forward between loads/stores of different sizes



EECS 470 Project 4 Group 5 14

- Check CDB output for different sized loads
- 2 stores simultaneously forward to a load word
- D-cache returns load value on the same cycle it is issued

Module: D-Cache
- Store writes to a cache line
- Load requests from memory if it misses in the cache
- Any store or load misses in the cache go in the MSHR until their requests are resolved
- Multiple stores to the same set in succession
- Multiple loads to the same set in succession
- Differing load and store request sizes (i.e. byte, half, and word)
- Multiple stores to the same address
- Store misses in caches and is being allocated to the same set as a returning cache line
- Two evictions from the victim cache on the same cycle due to returning data and store

that missed in cache
- Fill top and bottom sets of D$
- Load in load buffer gets all of its data from the cache, from memory, and a mix between
- Vary “way” parameter (i.e. test fully associative and direct mapped)
- No unevictable cache lines in a set (stall case)
- Load buffer and MSHR completely fill up

Module: I-Cache
- Receive an address from fetch and request instructions from memory
- Have transactions blocked due to d-cache having priority

System Tests
We had 2 main system tests that we did: our initial test where we integrated our main modules
without memory operations, and then the final integration of all the modules.

Our first integration was meant to test our pipeline without any memory interface. We had a
simulated fetch stage in the testbench that fed instructions straight to the decode stage, and we
used programs that contained no loads or stores. We also had a very simple branch management
system composed of a branch predictor that always predicted not taken. This allowed us to test
our logic to handle branch mispredictions. Once this pipeline worked to our satisfaction, we
entered the second phase of individual module design.

The second system integration was where we added memory operations including the instruction
cache, data cache, and load store queue. We also had implemented early branch resolution and
our more advanced branch predictor by this point. This phase of integration was much more
complicated to get working due to the added complexity of the pipeline and tedious nature of
debugging memory operations.



EECS 470 Project 4 Group 5 15

By altering parameters such as the size of the ROB, the RS, the load and store queues, and the
number of multiplication stages (alongside N), we exposed the modules in our processor to
different configurations of instructions. This revealed multiple shortcomings in the individual
implementations and interfaces—another advantage of keeping sizes parameterisable. Given our
aggressive aversion to stalling, we greatly benefited from such parameter sweeps, uncovering
different types of structural hazards that we had previously discounted.

Performance Analysis

Performance Analysis
We achieved a final clock period of 10.7ns in our synthesized pipeline with N=2, ROB size of
12, RS size of 9, 8 bits of branch prediction history, and a 4-stage multiplier. We chose these
parameters by balancing CPI and clock period. We made our structures large enough to avoid
extra stalling conditions but small enough to keep our clock period lower.

The instruction cache can only get 2 instructions from memory per cycle. This was a bottleneck
when starting a program or after branches. Despite all our other stall avoidance techniques, this
one was unavoidable given the memory interface we were constrained to.

In the end, our CPI averaged 1.40 across all test programs besides the halt program and the btest
programs. Therefore, our average instruction latency is 14.98ns.

We also found that our branch predictor has an accuracy of 67.3%.

Figure 3: Graph comparing branch predictor accuracy for example programs



EECS 470 Project 4 Group 5 16

Parameter Analysis
We conducted thorough analysis regarding the effects of parameter variations on our overall
performance. The specific parameter cases we tested dealt with altering the superscalar value N,
ROB size (ROB_SZ), RS size (RS_SZ), size of the branch history buffer (HIST_BUF_SZ),
number of icache banks (ICACHE_BANKS), and number of multiplication stages
(MULT_STAGES). We did so by tracking the number of stalls caused by different structural
hazards for various combinations.

We tested our pipeline with a superscalar value of N = 1, 2, 3, and 4. We found that there is
somewhat of a logarithmic relationship between N and performance gain, meaning as N
increases, there is exponentially less gain in performance (CPI). There are relatively large
performance gains going from N = 1 to N = 2, but the performance gains drop off with much
larger values of N after that. Figure 3 below depicts this variation in performance between the
different values of N for six example programs in graphical form. In the graph, the other
parameters are held constant while N is changed; ROB_SZ is set to 16, RS_SZ is set to 12, and
the number of icache banks is set to the lowest power of 2 above N/2.

Figure 4: Graph comparing CPI for varying values of N for example programs

We additionally tested our pipeline with many different ROB_SZ-RS_SZ combinations, ranging
from ROB_SZ = 12 and RS_SZ = 9, to ROB_SZ = 32 and RS_SZ = 24. In our findings, we
observed a general trend where larger ROB and RS sizes led to lower CPIs. Specifically, as



EECS 470 Project 4 Group 5 17

instructions retired faster due to early tag broadcast, we could set our RS size to be close to ¾ of
our ROB size, as opposed to the more commonly adopted ½. However, we also realized that
larger ROB and RS sizes correspond to a higher minimum clock period to meet slack—our
critical path is during dispatch, when instructions have to pass through the map table, then the
ROB, and finally, to the RS in the same clock cycle. Hence, we decreased our ROB and RS size
to 12 and 9 respectively, which with N = 2 gives us a clock period of 10.7ns and an average CPI
of around 1.4—our lowest time per instruction (14.98 ns).

Table 4 shows the final parameters we decided upon for our processor.

Final Parameters Used In Our Processor

N 2 Fetch Width 4

Rob Size 12 Multiplication Stages 4

RS Size 9 Load Queue Size 10

Branch History Size 8 Store Queue Size 10

BTB Size 64 D$ Size 256

BMask Size 4 D$ Cache Lines 32

No. of ALUs N D$ Block Size 8

No. LSQ FUs 2*N D$ Sets 4

No. of Multipliers N D$ MSHR Size 15

I$ Size 256 D$ Mem Buffer Size 15

I$ Cache Lines 16 D$ Load Buffer Size 10

I$ Banks 2 V$ Cache Lines 4

I$ Stride Length 3 V$ Block Size 8

Table 4: Final Parameters for our Processor



EECS 470 Project 4 Group 5 18

Figure 5: Graph comparing CPI for Different Values of (ROB_SZ, RS_SZ)

We also tested our processor performance with two different values for the number of banks in
the icache implementation. We tested with icache banks = N and icache banks = the lowest
power of 2 above N/2. The larger number of banks present with the N banks implementation was
determined to be unnecessary; using the lowest power of 2 above N/2 banks provides the most
efficient performance for our processor in the context of icache operations.

Next, we tested different numbers of mult stages for the mult module. We analyzed performance
for values MULT_STAGES = 2 and MULT_STAGES = 4. After obtaining correct functionality
for these two values, we determined that MULT_STAGES = 4 provided more of a benefit for the
latency of our multiplication operations and therefore better enhanced our overall processor
performance.

The number of history bits in the branch predictor was also varied. A lower value improved
performance in shorter programs due to a shorter warm up time, but we opted for a larger value
due to its significantly better performance for larger programs.

Timing Analysis and Critical Paths
Initially, our main critical path was for loads where they passed through our functional units to
calculate the address and then indexed into the data cache to perform the lookup in the same
cycle. This was due to unnecessary combinational logic, which we rectified by dealing with



EECS 470 Project 4 Group 5 19

loads and store requests in our data cache one cycle after receiving them from the load store
queue.

After this optimization, our critical path switched to the dispatch stage. A large combinational
path starting from fetch traces through decode, proceeding through the map table (to determine
dependent ROB tags), then the ROB (to obtain the corresponding values, if applicable), before
ending at the RS (where the ROB values are issued to FUs in the next cycle). This varies
significantly with ROB and RS sizes.

We also have a critical path from our PC, through the instruction cache, and back to the memory
buffer in the fetch stage. Toggling the size of the branch history buffer helped bring this down,
but the drop in performance for larger programs exceeded the marginal reduction in minimum
clock period. Moreover, accessing the instruction cache is similar to the data cache because it is
banked and directly mapped, but it is still a large data structure to index into, making the
operation hard to optimize.

When we perform 2 stage multiplication operations instead of 4, our multiplier falls on our
critical path. This marginally improves our CPI, but as multiplication operations aren’t a
significant portion of most programs, the increase in minimum clock period obviates any
potential benefits.



EECS 470 Project 4 Group 5 20

Application And Conclusion

Design Summary
In summary, we implemented an N-way superscalar processor with early tag broadcast and early
branch resolution, characterized by an aggressive aversion to stalling.

Societal impacts
Our design aims to minimize stalling to maximize pipeline usage at the expense of the clock
period. Since the clock consumes a large amount of power in a typical processor, a slower clock
and lower CPI can reduce the overall energy required to run a particular program. Therefore, if
produced at scale, we can help address climate concerns through reduced energy consumption.

Using early branch resolution, we can also minimize the number of wasted cycles by correcting
the execution path as soon as possible. Again, that reduces the amount of energy wasted on
unwanted instructions. Our consequently smaller modules also reduce the amount of silicon
used.

Lessons Learned
Towards the end of the project, we faced a large number of bugs arising from the complexity of
the design. The final integration would likely have been significantly easier if we had done the
following:
1) Formalized our high level interfaces prior to writing individual modules
2) Reduced the complexity of our design by accounting for acceptable stalling conditions.
Instead, we tried to handle every single edge case using extensive (and computationally
expensive) combinational logic.

Regarding our high level interfaces, we had to resolve multiple bugs regarding branch prediction
because there was ambiguity about whether it happened at fetch or dispatch. Modifications to our
design in the midst of debugging weren’t propagated across modules consistently. This resulted
in some issues at the interface. For example, we were predicting our branches at fetch but
checkpointing our map table at dispatch. Some other examples of module interface mismatch
included the load tags between the LSQ and data cache, and whether we were clearing
mispredicted instructions using a bmask clear signal or the tag of the mispredicted instruction.
Assertions in code regarding expected input behavior (which we used in some modules) could
have mitigated a significant portion of such issues if used across the board.

In terms of complexity, we found that we made our memory architecture more complicated than
it needed to be. Both our LSQ and data cache were designed to handle many edge cases without
stalling. The complexity of these modules, paired with the difficulty of debugging memory
operations, caused many delays in our final integration. If we had instead chosen to prioritize



EECS 470 Project 4 Group 5 21

simplicity over minimizing latency, our final debugging process would have been much
smoother. For example, store to load forwarding would have been much simpler if we stalled
loads in the reservation station, not a separate load queue, while waiting for prior stores to
resolve. The CPI benefit of minimal stalling might have been superseded by that of a lower
minimum clock period if we had employed a more flexible approach to stalling from the onset.

Next Steps
There is significant room in our design to optimize our clock period. Since the complexity of the
design required extensive debugging, we did not have much time to optimize our critical paths.
Unfortunately, much like our synthesizer at times, we could not meet (the deadline) slack with
regards to making improvements to some of the areas we had noted.

For instance, our aforementioned critical path is during dispatch. Breaking this into two cycles
(i.e. sending the ROB values in the same cycle as instructions are issued to the FUs) will enable
us to reap the benefits of larger ROB and RS sizes with lower clock periods.

Additionally, there is a large amount of not only convoluted, but redundant combinational logic
currently present in our processor. For example, in the data cache, there is a load buffer, a
MSHR, and a memory buffer. These components all share much common data so it would have
been better to combine all three components into one. Calculations to determine cache lines for
allocation and eviction can also be optimized.

Finally, we delivered consistently higher CPI for programs with many function calls (e.g. graph.c
and backtrack.c). Adding a RAS to our branch prediction infrastructure would significantly
improve our performance for such programs.

Acknowledgments
We would like to thank the course staff of EECS 470 for their support throughout the project.
This has been a great learning experience for all of us, and we are grateful for the opportunity.


